Techniques for Finite Element Methods on Modern Processors
نویسندگان
چکیده
In this thesis, methods for efficient utilization of modern computer hardware for numerical simulation are considered. In particular, we study techniques for speeding up the execution of finite-element methods. One of the greatest challenges in finite-element computation is how to efficiently perform the the system matrix assembly efficiently in parallel, due to its complicated memory access pattern. The main difficulty lies in the fact that many entries of the matrix are being updated concurrently by several parallel threads. We consider transactional memory, an exotic hardware feature for concurrent update of shared variables, and conduct benchmarks on a prototype processor supporting it. Our experiments show that transactions can both simplify programming and provide good performance for concurrent updates of floating point data. Furthermore, we study a matrix-free approach to finite-element computation which avoids the matrix assembly. Motivated by its computational properties, we implement the matrix-free method for execution on graphics processors, using either atomic updates or a mesh coloring approach to handle the concurrent updates. A performance study shows that on the GPU, the matrix-free method is faster than a matrix-based implementation for many element types, and allows for solution of considerably larger problems. This suggests that the matrix-free method can speed up execution of large realistic simulations.
منابع مشابه
Speeding up the Stress Analysis of Hollow Circular FGM Cylinders by Parallel Finite Element Method
In this article, a parallel computer program is implemented, based on Finite Element Method, to speed up the analysis of hollow circular cylinders, made from Functionally Graded Materials (FGMs). FGMs are inhomogeneous materials, which their composition gradually varies over volume. In parallel processing, an algorithm is first divided to independent tasks, which may use individual or shared da...
متن کاملFinite Element Computations on Multicore and Graphics Processors
Ljungkvist, K. 2017. Finite Element Computations on Multicore and Graphics Processors. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1512. 64 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9907-5. In this thesis, techniques for efficient utilization of modern computer hardwarefor numerical simulation are considered. In particul...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملAppropriate Loading Techniques in Finite Element Analysis of Underground Structures
Stability of underground structures is assessed by comparing rock strength with induced stresses resulted from ground stresses. Rock mass surrounding the opening may fail either by fracture or excessive deformation caused. Accurate calculation of induced stresses is therefore fundamental in the stability analysis of an opening. Although numerical methods, particularly finite element method, are...
متن کاملComparative Analysis of Shea-butter Production Techniques Used among Women Processors in Baruten and Ilorin-South Areas, Kwara State, Nigeria
The study compared the shea-butter production techniques used among women processors in Baruten and Ilorin-South Local Government Areas of Kwara State, Nigeria. A multistage sampling technique was used to elicit information from 120 respondents through a structured interview schedule with questionnaire. Data were analyzed with both descriptive and inferential statistics. The mean age of the res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014